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We introduce a new method to generate duality relations for correlation func-
tions of the Potts model on a planar graph. The method extends previously
known results, by allowing the consideration of the correlation function for
arbitrarily placed vertices on the graph. We show that generally it is linear
combinations of correlation functions, not the individual correlations, that are
related by dualities. The method is illustrated in several non-trivial cases, and
the relation to earlier results is explained. A graph-theoretical formulation of
our results in terms of rooted dichromatic, or Tutte, polynomials is also given.
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1. INTRODUCTION

The Potts model, a generalization of the Ising model to q spin components
introduced by Potts (1) in 1952, has been at the forefront of research interest
for almost five decades. While the critical properties of planar models are
now largely known, (2–5)much less is known about their correlation functions.
A key element of planar spin models is the notion of duality relations.

Every planar graph, or lattice, G has an associated dual planar graph G (D),
and it is well-known (1, 6) that the partition functions of the Potts model on G
and G (D) are proportional to each other when their couplings are correctly
related. In the case of q=2, the Ising model, it is also known (7) that a duality
relation exists between certain two-spin correlation functions. It has long
been suspected that the correlations of the Potts models onG andG (D) should
be similarly related. Indeed, in a series of recent papers we have obtained



correlation dualities for n vertices (spins) residing on the boundary of one
face (8–10) or two faces (11) of G for q \ n. The one-face problem of n=2, 3
was first considered in ref. 8, and subsequently Jacobsen (12) raised the
question whether it is feasible to extend the analysis to n=4. This question
has been answered affirmatively, (9, 10) and the analysis for general n has also
been reformulated in graph-theoretical terms. (13)

It was shown that, as in the case of the Ising model, a duality relation
exists connecting spin correlation functions with spins located on the
boundary of one face for q \ n. For spins located on two faces, the lattice
has the topology of a cylinder, and the duality relation is relevant in the
consideration of Potts models with quenched bond randomness. (14) The
analysis of the N-face problem for general N, however, remains open and a
challenging problem in statistical mechanics.
In this paper we consider this N-face problem, namely, correlation

duality relations for vertices residing on N faces of G for q \ n. As we shall
see, a new picture emerges for N \ 2. Instead of duality relations between
individual correlation functions, we now obtain relations between linear
combinations of correlation functions.
The organization of this paper is as follows. In Section 2 we establish

notations and briefly review the Fortuin–Kasteleyn representation of the
Potts model, and derive the duality relation for the partition function.
Using two identities which we establish as lemmas, we introduce in Section
3 a method which allows us to generate correlation duality relations. While
our method does not necessarily generate all such duality relations, we
show that generally the duality relates linear combinations of, rather than
individual, correlation functions. Explicit examples are given in Section 4
and the relation to earlier results is explained. In Section 5 we reformulate
our results in graph-theoretical terms as rooted dichromatic, or rooted
Tutte, polynomials.

2. THE SETUP

2.1. The Fortuin–Kasteleyn Representation

Consider a finite, planar connected graph G embedded on a sphere
with vertex set V, edge set E, and face set F. We write |V| for the size of the
set V and similarly for E, F, and other terms. Let s denote an assignment
of colors, or states, to the vertices of G, which is a map from V to the color
set C={1,..., q}. Then the partition function of the Potts model on G is

Z=C
s

D
Oi, jP
eKd(si, sj) (1)
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where the summation is over the |V|q coloring assignments s, the product
runs over all nearest neighbor spin pairs interacting with the coupling
parameter K, d is the Kronecker delta function, and si is the color of the
ith vertex.
The Fortuin–Kasteleyn (F–K) representation (15) of the Potts model

replaces the configurational sum in (1) by a sum over edge sets. Let S ı E
be an edge set on the graph G. If we remove from G all the edges which are
not in S, we obtain a subgraph which contains all the vertices, and which
in general has many connected components. This is called a spanning
subgraph of G, namely, the collection of all vertices and an arbitrary edge
set S. We write |S| to denote the number of edges in S, and write p(S) to
denote the number of connected components in the spanning subgraph
defined by S. In this picture, any isolated vertex in the spanning subgraph
counts as a connected component, and so contributes a summand 1 in the
counting of p(S). Define

v=eK−1 (2)

so that we have

eKd(si , sj)=1+vd(si, sj) (3)

The substitution of (3) into (1) now gives rise to the F–K representation of
the partition function

Z(G; q, v) — Z= C
S ı E
v |S|qp(S) (4)

The number of colors q appears as a variable in (4), rather than a summa-
tion limit as in (1). For this reason the F–K representation (4) forms the
basis of essentially all analyses of the Potts model.

2.2. Dual Partition Functions

As a precursor to discussions in later sections, we give here a graph-
theoretical derivation of the well-known duality relation for the partition
function.
The standard dual graph of G is constructed by placing vertices in the

faces of G, and connecting them with edges which are transverse to the
edges of G. A pair of transverse edges are said to be dual to each other.
The resulting dual graph G (D) has |F| vertices, |E| edges and |V| faces, and is
also planar. For a given edge set S on G, we define its dual edge set S (D) on
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G (D) by requiring that an edge of G (D) is in S (D) if, and only if, its dual edge
is not in S. Thus,

|S|+|S (D)|=|E| (5)

Moreover, if we start from |V| isolated vertices of G, and add one by one
the edges of S, then each edge reduces p(S) by 1 unless it forms an inde-
pendent cycle, in which case p(S) is unchanged. Therefore we have the
relation

p(S)=|V|− |S|+c(S)=|V|− |S|+p(S(D))−1 (6)

where c(S) is the number of independent cycles in the spanning subgraph
of S, and is related to p(S(D)), the number of components in S (D), through
the topological relation c(S)=p(S(D))−1. Using (5) and (6) we have the
identity

v |S|qp(S)=v |E|− |S
(D)|q |V|− |S|+p(S

(D))−1=k(q/v)S
(D)
qp(S

(D)) (7)

where

k=q1− |F|v |E| (8)

and we have used the Euler relation

|V|+|F|=|E|+2 (9)

Substituting (7) into (4), we see that the Potts model partition functions on
G and G (D) are proportional, when the couplings K and Kg are related by
the equation

vvg=q (10)

where vg=eK
g
−1. The partition function duality is the statement that

Z(G; q, v)=kZ(G(D); q, vg) (11)

where we have made use of the one-to-one correspondence between edge
sets S and dual edge sets S (D). Note that we have

k ·k (D)=q1− |F|v |E| · q1− |V|(vg) |E|=1 (12)

which says that the dual of the dual partition function is the partition
function itself.
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2.3. The Correlation Function

The Potts correlation function is defined as the probability that a
given set of vertices are assigned fixed colors. (4) Specifically, let R ı V be
any subset of the vertices which are assigned fixed colors. We shall call
these the roots for the correlation functions, and the graph with roots a
rooted graph. Let the |R| roots lie on the boundaries of N distinct faces of
G, which will be called the external faces of the graph. For simplicity, we
shall assume that external faces are not adjacent to each other, namely,
they do not share any vertices or boundary edges.
Let c: RQ C be any assignment of colors on the roots, so that ci is the

color assigned to the root i, and we write

dc(s)=D
i ¥ R
d(si, ci) (13)

Then the correlation function for the assignment c on the root set R is
defined to be the expectation value of dc(s), namely,

Pc — Odc(s)P=Z(G; q, v)−1 C
s

dc(s) D
Oi, jP
eKd(si, sj) (14)

where the summation in the right-hand side is a partial partition function.
Clearly, the explicit expression of Pc depends on the location of the roots as
well as the explicit color assignment c.
A partition of roots R is a division of the |R| roots into subsets or

blocks. Then, every color assignment c defines a partition X of the roots,
by the rule that two vertices i, j in R belong to the same block of X if, and
only if, ci=cj. By the symmetry of the Potts interactions, the correlation
(14) depends only on the partition defined by c, not on the specific colors.
We can therefore associate each partial partition function to a partition X.
Alternately, for any partition X of the roots, we have a partial partition
function

ZX — ZX(G; q, v)=C
s

dc(s) D
Oi, jP
eKd(si, sj) (15)

where c is any color assignment that produces the partition X. Since Pc and
ZX are proportional, it is sufficient to discuss duality relations for the
partial partition function ZX. Furthermore, since the number of blocks that
can be realized through some assignment of colors is at most q, we shall
henceforth assume that q \ |R| (cf. Section 2.4 below).

New Correlation Duality Relations for the Planar Potts Model 923



The F–K representation also extends to the partial partition functions.
Expanding (15) as in (4), we again obtain an expansion of connected com-
ponents. Generally, any edge set S defines a partition p(S) of the roots
where two roots belong to the same block if, and only if, they are con-
nected in S. Using this notion, we can separate the edge sets into classes

S(Y)={S ı E : Y=p(S)} (16)

labeled by their corresponding partitions Y of R. Clearly every edge set S
belongs to exactly one of these classesS(Y).
Now, in the expansion of (15), the role of the factor dc(s) is to restrict

the summations to fixed colors for vertices in R. The net result is that each
cluster containing roots contributes a factor 1, instead of the factor q in (4).
This permits us to define, for any partition Y, the summation over edge sets
S with p(S)=Y,

FY(G; q, v)= C
S ¥S(Y)

v |S|qp(S)− |Y| (17)

where |Y| is the number of blocks in Y. The set of partitions of R is par-
tially ordered. We write YQX to mean that every block in Y is wholly
contained in a block in X. Then we can write (15) as

ZX(G; q, v)= C
YQX

FY(G; q, v) (18)

2.4. Möbius Inversion and Planar Identities

The relation (18) holds for every partition X of roots. When q \ |R| it
is well-known (16) that the set of partially ordered sums (18) can be inverted,
allowing us to write FX as a linear combination of ZY. For YQX define
the Möbius inversion coefficient

m(Y, X)=(−1) |Y|− |X| D
b ¥X
(nb(Y)−1)! (19)

where the product on the right side runs over blocks b in X, and nb(Y) is
the number of blocks of Y that are contained in b. Then we have for every
partition X,

FX(G; q, v)= C
YQX

m(Y, X) ZY(G; q, v) (20)
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One peculiarity for planar graphs is that FX can be zero for certain
partitions X. This phenomenon was explored in detail in ref. 10 in the case
of a single external face. A partition X of roots R is planar if roots can be
connected by non-crossing lines drawn inside the face such that all roots in
each block are connected. Otherwise the partition is non-planar (also called
a crossing partition in the mathematics literature (17)). In the case of roots
on a single face, one has FX=0 if the partition X is non-planar. It then
follows from (20) that whenever X is a non-planar partition, the partial
partition functions ZY must satisfy the identity

C
YQX

m(Y, X) ZY(G; q, v)=0 (21)

giving rise to ‘‘sum-rule’’ relations for the partial partition functions. (9) In
general, when there are several external faces, identities of this type also
hold for any root set R, although it is a harder problem to determine these
relations.

3. CORRELATION DUALITY RELATION

3.1. Dual Rooted Graph Gg

In Section 2.2 we introduced the dual graph G (D), and described the
well-known duality for partition functions on G and G (D). In this section we
introduce the dual rooted graph Gg which plays the corresponding role for
correlation functions.
Starting from a rooted graph with |R| roots on N external faces, one

can construct a dual rooted graph Gg. The procedure of constructing Gg

for N=1 has been described in detail in refs. 10 and 13. The construction
of Gg for general N repeats the N=1 process for each external face, a
prescription we now briefly describe.
Place N extra vertices, one each in the center of each of the N external

faces. For each external face, let f be the extra vertex and connect it to
each root on the boundary of this face by an edge. This gives a new graph
Gœ which has N more vertices than G and |R| additional edges. The dual
graph of Gœ is also planar, and it has N faces containing the N extra ver-
tices f. Now remove all edges of these N faces, and the resulting graph is
the dual rooted graph Gg.
The vertices of Gg residing inside the N external faces of G are now the

dual roots and we denote this set by Rg. Clearly, the number of edges of Gg

New Correlation Duality Relations for the Planar Potts Model 925



is |E|, and we have |Rg|=|R| (because external faces are non-adjacent). It is
also clear that the total number of vertices of Gg is

|Vg|=|F|+|R|−N (22)

We can recover the standard dual graph G (D) from Gg by fusing the
dual roots Rg inside each external face into a single dual vertex. This gives
a one-to-one correspondence between edges on G (D) and Gg, and hence we
define the dual edge set Sg on Gg to be the same edge set as S (D) on G (D).
Therefore in particular we have

|Sg|=|S (D)| (23)

LetG (F) denote the graph generated by fusing all rootsR inG, and (Gg) (F) the
graph generated by fusing all rootsRg inGg. Then, we have the identities

(Gg) (F)=G(D) and G (F)=(Gg) (D) (24)

3.2. A Preliminary Relation

Our results will depend crucially on the topology of the connectedness
of the partitions p(S) and p(Sg). Fix an edge set S on G, and let X=p(S),
Y=p(Sg). Recall that |X| is the number of blocks in X. Also, let n(X) be
the number of clusters of external faces on G connected by S (where we
define two external faces to be in the same cluster if a connected compo-
nent of S contains roots on both faces). Similar definitions apply to |Y| and
n(Y).
Now Sg and S (D) are the same edge set, and G (D) is obtained from Gg

by fusing. Hence we have

p(Sg)=|Y|+D

p(S(D))=n(Y)+D (25)

where D is the number of connected components in the spanning graph
generated by Sg that are not connected to any dual roots. It follows that we
have

|Y|−n(Y)=p(Sg)−p(S (D)) (26)

and similarly

|X|−n(X)=p(S)−p(Sg (D)) (27)
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where Sg (D) on Gg (D) is the edge set dual to Sg on Gg. Combining (26) and
(27) and making use of (6), we obtain the identity

|X|+|Y|−n(X)−n(Y)=[p(S)−p(S(D))]+[p(Sg)−p(Sg (D))]

=[|V|− |S|−1]+[|Vg|− |Sg|−1]

=|Vg|− |F|

=|R|−N (28)

where use has also beenmade of (22), the Euler relation (9), and the relation

|S|+|Sg|=|E| (29)

For N=1, we have n(X)=n(Y)=1, and (28) reduces to

|X|+|Y|=|R|+1 (30)

a relation used in ref. 10. For N=2, (28) reduces to Eq. (21) of ref. 11.3

3 After the replacements of n(X)Q 2−q(S), n(Y)Q 2−q(Sg), and |R|−NQN−2.

3.3. First Identity

Our construction of correlation duality relations is based on the use of
two identities. The first identity, which we now state as a lemma, is a gen-
eralization of the identity (7). The new ingredient here is that the general-
ization should permit the consideration of the factor v |S|qp(S)− |X| appearing
in the F–K representation (17).

Lemma 1. For a fixed edge set S on G, define X=p(S) and Y=
p(Sg). Then we have the identity

v |S|qp(S)−[|X|−n(X)]/2=kŒ(v−1q) |S
g| qp(S

g)−[|Y|−n(Y)]/2 (31)

where

kŒ=v |E|q1− |F|−[|R|−N]/2 (32)

Remark. Notice that v−1q=eK
g
−1, so we define vg=v−1q as before,

and we can rewrite (31) as follows to indicate the explicit dependence on S
and Sg,

v |S|qp(S)−[|p(S)|−n(p(S))]/2=kŒ(vg) |S
g| qp(S

g)−[|p(Sg)|−n(p(Sg))]/2 (33)
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Proof. The proof of the lemma parallels that of the partition func-
tion duality given in Section 2.2. First, the relation (6) still holds so that
after using (29) the first line of (7) becomes

v |S|qp(S)=v |E|− |S
g|q |V|− |S|+p(S

(D))−1 (34)

The lemma (31) now follows after the use of the identities (26) and (28).
Notice that we have

kŒ · (kŒ)g=v |E|q1− |F|−[|R|−N]/2 · (vg) |E| q1− |V
g|−[|R|−N]/2=1 (35)

where |Vg|, the number of faces of the dual of Gg, is given by (22).

3.4. Second Identity

Let S and T be edge sets which define the same partition of R, i.e.,
p(S)=p(T), then a key feature of the case N=1 is that their dual edge
sets also define the same partition of Rg. Namely,

p(S)=p(T) if and only if p(Sg)=p(Tg), N=1 (36)

This feature permits us to derive correlation duality relations for N=1. (8–10)

But (36) is false for N \ 2. (11) However a weaker statement holds which we
now state as a lemma.
First, some definitions: A block of X is local if it contains roots from

one face only, and is non-local otherwise. A partition X is local if every
block of X is local, and is non-local if any block in X is non-local. Given a
partition X, we can construct from it a unique local partition Xloc as
follows: We split up every non-local block into a collection of local blocks,
by separating its roots which lie on different faces. The collection of all
these local blocks is the new partition Xloc. See Fig. 1 for an example.
Any local partition is a collection of planar partitions of the roots on

each of the external faces. Each of these planar partitions on a single face
has a unique dual partition. So for any local partition t, we will define tg to
be the collection of these dual partitions on Gg, and by extension we will call
it the dual partition of t. Notice that tg is always a local partition on Gg.

Lemma 2. For any edge set S on G,

p(Sg)loc Q p(S)
g
loc (37)
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(a) (b)

1

6

42

53

8

7

1

6

42

53

8

7

Fig. 1. An N=3 example of a partition X and the associated local partition Xloc. (a) X=
(135)(247)(68), (b) Xloc=(1)(35)(2)(4)(7)(68). Cross-hatched areas denote external faces;
lines denote connected edge sets.

Furthermore, let S and T be two edge sets on G, and suppose that
p(S)=p(T). Then we have

p(Sg)loc=p(Tg)loc (38)

Remark. The result corresponding to (38) also holds on Gg, namely,
if p(Sg)=p(Tg) then also p(S)loc=p(T)loc.

Proof. It is sufficient to establish the relations (37) and (38) for each
external face separately. So pick one external face, call it f, and let Rf
denote the roots which belong to this face, and Rg

f their dual roots. We will
construct two different N=1 rooted graphs from (G, R), as follows (recall
that a rooted graph is an ordered pair, consisting of a graph together with a
set of roots. Mostly we have ignored the distinction between graph and
rooted graph, but we will distinguish them throughout this proof).
First, by ignoring the roots on the other faces we obtain the rooted

graph (G, Rf). As a shorthand we will denote this pair by Gf. Second, by
fusing the roots on the other external faces (but not on f) we obtain a dif-
ferent rooted graph (G (F)f , Rf), which also has roots only on the face f.
(Recall that we fuse roots on a face by merging them into a single vertex).
Again as a shorthand we denote this by GFf=(G

(F)
f , Rf).

Each of these rooted graphs has a dual rooted graph, which we denote
by Gg

f and (G
F
f)

g respectively. These are constructed according to the pro-
cedure described in section (3.1) for the N=1 case, using only the roots on
the face f. Notice that the underlying graph of (GFf)

g is identical to the
graph Gg, because the process of fusing roots on a face in G automatically
splits the dual vertex in G (D) to produce the dual roots. As a convenient
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shorthand we write (Gg)f to denote the pair (Gg, Rg
f), which is obtained

from Gg by ignoring the roots on the other faces. It follows then that

(GFf)
g=(Gg)f (39)

Now let S be an edge set on G. Since the underlying graphs of Gf and
GFf have the same edges as G, S also defines partitions of the roots Rf on
Gf and G

F
f . For clarity in this proof, we write these partitions as p(S; Gf)

and p(S; GFf) respectively, where we include the graph in order to distin-
guish them. Note that p(S; Gf) is one part of the local partition p(S)loc,
namely the part that contains the roots on f. Let p(S)f denote this part of
the partition p(S)loc, and similarly p(Sg)f the part of p(Sg)loc which con-
tains the dual roots on f. So we have

p(S; Gf)=p(S)f, p(Sg; (Gg)f)=p(Sg)f (40)

To prove the first result (37), note that since GFf is obtained from Gf
by fusing vertices we have

p(S; Gf)Q p(S; G
F
f) (41)

These are both N=1 partitions, hence they have dual partitions, and these
satisfy

p(S; Gf)g R p(S; G
F
f)

g=p(Sg; (GFf)
g) (42)

Using (39) and (40) this gives

p(S)gf=p(S; Gf)
g R p(Sg; (Gg)f) (43)

Combining these for every external face gives

p(S)gloc R p(S
g)loc (44)

To prove the second result (38), note that since p(S)=p(T) it follows
also that

p(S; GFf)=p(T; G
F
f). (45)

Taking the dual of both sides gives

p(Sg; (GFf)
g)=p(Tg; (GFf)

g) (46)
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and hence

p(Sg; (Gg)f)=p(Tg; (Gg)f) (47)

Again combining these for every external face gives

p(Sg)loc=p(Tg)loc (48)

Q.E.D.

3.5. Form of Duality Relations

As a convenient shorthand, for partitions X of R and Y of Rg we write

ZX=ZX(G; q, v), Zg
Y=ZY(G

g; q, vg) (49)

and similarly we write

FX=FX(G; q, v), Fg
Y=FY(G

g; q, vg) (50)

where FX is defined in (18). We seek duality relations which express each
given ZX in terms of a linear combination of the dual Z

g
Y. Recall the

Möbius inversion (20) relating ZX to FX, it is sufficient to obtain duality
relations for the functions FX. Indeed, for N=1, for example, the identity
(36) ensures that there is a one-to-one correspondence between the parti-
tions X=p(S) on G and Y=p(Sg) on Gg. Then, using Lemma 1 one
obtains the desired duality relation

q |X|/2FX(G; q, v)=kŒq |Y|/2FY(Gg; q, vg), N=1 (51)

where we have used n(X)=n(Y)=1, and the coefficient kŒ was defined in
(32). This duplicates the result of ref. 10.4

4 It can be readily verified that Eq. (51) is the same as Eq. (49) of ref. 10, after the substitution
of FX=DX and F

g
Y=q

−|E|/2Dg
Y.

For N \ 2, however, the mappings XQ Y and/or YQX are not
necessarily one-to-one. (11) See Fig. 2 for an example. Generally, for fixed
p(S)=X, p(Sg)=Y, we define by analogy to (17) the functions

FX, Y(G; q, v)= C
S ¥S(X), Sg ¥S(Y)

v |S|qp(S)− |X|

FY, X(Gg; q, vg)= C
S ¥S(X), Sg ¥S(Y)

(vg) |S
g| qp(S

g)− |Y| (52)
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1

4

3

2*

1

2
1*2*

3*
4*

1*

3

42

3* 4*

(a) (b)

Fig. 2. An N=2 example showing a given partition X=(1)(23)(4) (solid line) can be the
dual of two different partitions Y1 and Y2 (broken lines). (a) Y1=(1g2g3g4g), (b) Y2=
(1g2g)(3g4g).

Then, one has the duality relation

q |X|/2FX, Y(G; q, v)=kŒq |Y|/2FY, X(Gg; q, vg) (53)

which is a generalization of (51). The partial partition functions are then

ZX(G; q, v)= C
XŒQX

C
Y
FX, Y(G; q, v)

ZY(Gg; q, vg)= C
YŒQ Y

C
X
FY, X(Gg; q, vg) (54)

For N=1, the XY Y mapping is unique, so that (54) becomes (18) and
the relation (54) can be inverted, permitting one to express ZX as a linear
combination of Zg

Y’s. For N \ 2, however, (54) cannot be inverted, and so
we cannot express the FX, Y in terms of the ZX. Hence the duality relations
(53) do not help us. As a result we will instead derive duality relations of
the form

C
X
a(X) FX=kŒ C

Y
b(Y) Fg

Y (55)

The sum on the left runs over partitions of the root set R, and the sum on
the right side runs over partitions on Rg. The coefficients a and b depend
on q, v as well as their arguments X and Y, and are different for each
duality relation.
Using the Möbius inversion (20), (55) provides duality relations for the

partial partition functions, and we end up with

C
W
a(W) ZW=kŒ C

U
b(U) Zg

U (56)
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where

a(W)= C
XRW

m(W, X) a(X)

b(U)= C
YR U

m(U, Y) b(Y)
(57)

Note that the number of independent relations depends on the root set R.
If all roots lie on one face, so that N=1, then our result produces the same
number of relations as the number of planar partitions of the root set. This
duplicates the results of ref. 10. If all roots lie on distinct faces, so that
|R|=N, then our method produces just one relation, namely the original
duality (11).

3.6. Correlation Duality

We use the two lemmas to generate correlation duality relations. The
definition (52) was not useful because it involved a sum over all edge sets S
with fixed partition X=p(S) and fixed dual partition Y=p(Sg). As we
now show, the correct way to generate duality relations is by summing
instead over all edge sets with fixed local partitions Xloc and Yloc. According
to (37) each of these must be a refinement of the dual of the other, so we
can restrict attention to such pairs of local partitions.
Accordingly, let t be a local partition of R, and let g be a local parti-

tion of Rg. We say that (t, g) are compatible if

gQ tg and tQ gg (58)

Let (t, g) be compatible local partitions, and define a collection of
edge sets on G as follows:

S(t, g)={S … E : p(S)loc=t, p(Sg)loc=g} (59)

For ease of notation, we write S(t, g)g for the collection of edge sets on
Gg which are dual to those inS(t, g).
In general, for a given pair (t, g), the set S(t, g) may be empty. (For

example, in the case N=1 this happens unless g=tg). However if S(t, g)
is not empty, then (38) implies that it must have the following form (recall
the definition (16))

S(t, g)=S(X1) 2 · · · 2S(Xm) (60)
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for some collection of partitions {X1,..., Xm}. The reason is clear: suppose
that S ¥S(t, g) and that p(S)=X. Let T be any other edge set with
p(T)=X. Then by definition also p(T)loc=t, and by (38), p(Tg)loc=g.
Hence also T ¥S(t, g), henceS(X) …S(t, g).
We postpone for a moment the question of determining which parti-

tions occur on the right side of (60). First we will use this relation to write
the sum over edge sets in S(t, g) as a sum over factors FX defined in (17).
Recalling the left side of (33), and using (60) and (17) we get the following
identity:

C
S ¥S(t, g)

v |S|qp(S)−[|p(S)|−n(p(S))]/2=C
m

j=1
C

S ¥S(Xj)
v |S|qp(S)−[|p(S)|−n(p(S))]/2

=C
m

j=1
q[|Xj|+n(Xj)]/2FXj (61)

Next we use our first identity. Using (33) we can rewrite the left side of
(61) as

C
S ¥S(t, g)

v |S|qp(S)−[|p(S)|−n(p(S))]/2=kŒ C
Sg ¥S(t, g)g

(vg) |S
g| qp(S

g)−[|p(Sg)|−n(p(Sg))]/2

(62)

Now we repeat for Gg the argument leading to (60), and we obtain

S(t, g)g=S(Y1) 2 · · · 2S(Yl) (63)

for some collection of partitions {Y1,..., Yl} of Rg. Hence we end up with
the analog of (61), namely

C
Sg ¥S(t, g)g

(vg) |S
g| qp(S

g)−[|p(Sg)|−n(p(Sg))]/2=C
l

i=1
q[|Yi|+n(Yi)]/2Fg

Yi (64)

Putting together (61), (62) and (64) we get

C
m

j=1
q[|Xj|+n(Xj)]/2FXj=kŒ C

l

i=1
q[|Yi|+n(Yi)]/2Fg

Yi (65)

This is our new duality relation. As promised, it relates a linear combi-
nation of FX to a linear combination of F

g
Y. Now we turn to the question of

which partitions can occur on the left and right sides of (65). These are
determined by the compatible pair (t, g) via the relations (60) and (63). In
order to decide which partitions occur in (60) and (63), it seems to be neces-
sary to work on a case by case basis, by starting with (t, g) and examining
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each planar partition X to see if it produces this pair. So partly to hide our
ignorance, and partly to tidy up the notation, we define

h(X; t, g)=˛1 if ,S … E such that p(S)=X, p(S)loc=t, p(S
g)loc=g

0 otherwise
(66)

Similarly if Y is a partition of Rg, then define hg(Y; t, g)=1 if there is an
edge set Sg with p(Sg)=Y and also p(S)loc=t, p(Sg)loc=g, and otherwise
hg(Y; t, g)=0. Then we can rewrite (65) as

C
X
h(X; t, g) q[|X|+n(X)]/2FX=kŒ C

Y
hg(Y; t, g) q[|Y|+n(Y)]/2Fg

Y (67)

and this is precisely the form described in (55).
Now finally we use the Möbius relation (20) to re-express (67) in terms

of the partial partition functions. The result has the form (56), namely

C
W
a(W) ZW=kŒ C

U
b(U) Zg

U (68)

where the coefficients are

a(W)=a(W; t, g)= C
XRW

m(W, X) h(X; t, g) q[|X|+n(X)]/2 (69)

and

b(U)=b(U; t, g)= C
YR U

m(U, Y) hg(Y; g, t) q[|Y|+n(Y)]/2 (70)

To summarize, we have obtained a duality relation for every pair of com-
patible local partitions (t, g) in the form of (67). In some cases the relation
is empty; otherwise it is given by (67). However, it must be emphasized that
while we have obtained new duality relations for the partial partition func-
tions ZX, our prescription does not necessarily generate all duality relations
(in fact we know that it is incomplete in the case N=2 described below).
The generation of the complete set of dualities remains an open question.

4. EXAMPLES

4.1. Two External Faces, Two Roots Each

This case was examined in detail in ref. 11 (see in particular Figs. 6
and 7), and we compare our results here with those in ref. 11. Label the
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roots 1, 2 on the first face, and 3, 4 on the second face. There are four local
partitions on G, namely (1)(2)(3)(4), (12)(3)(4), (1)(2)(34) and (12)(34)
(we follow standard notation for partitions, so e.g., (1)(2)(34) means that
there are three blocks, containing roots 1, 2 and 3, 4 respectively). Since
there are also four local partitions on Gg, there are 16 possible pairs (t, g).
However, only 10 of these satisfy (37), so there are 10 possible duality rela-
tions (68). Closer examination shows that only 5 of these pairs can occur as
local partitions of edge sets. We write 1g, 2g, 3g, 4g for the dual roots. The
5 possible pairs are

t=(1)(2)(3)(4), g=(1g2g)(3g4g)

t=(1)(2)(34), g=(1g2g)(3g)(4g)

t=(12)(3)(4), g=(1g)(2g)(3g4g)

t=(12)(34), g=(1g)(2g)(3g)(4g)

t=(1)(2)(3)(4), g=(1g)(2g)(3g)(4g)

(71)

There are 15 partitions of the 4 roots on G, and they are all planar,
that is each one can occur as p(S) for some edge set S. By our basic result
(60) each partition is associated with one of the five pairs in (71). Similarly
the 15 partitions of the dual roots are each associated with one pair. In
Table I we show these associations.
The 5 duality relations are now obtained by substituting into (65). For

example, the third pair in (71) gives the identity

q5/2F(12)(3)(4)+q3/2F(123)(4)+q3/2F(124)(3)

=kŒ[q5/2F(1g)(2g)(3g4g)+q3/2F(1g3g4g)(2g)+q3/2F(2g3g4g)(1g)] (72)

This reproduces the result in ref. 11.5 Similarly the first, second and fourth

5 It can be verified that Eq. (72) is the same as Eq. (29) of ref. 11, after the substitutions
TX=v−|E|/2q |F|/2+|X|FX, T

g
X=v

|E|/2q−|F|/2+|Y|Fg
Y, and renaming roots 1Q 1, 2Q 3, 3Q 4, 4Q 2,

and dual roots 5Q 1g, 6Q 3g, 7Q 4g, 8Q 2g.

pairs in (71) reproduce three other identities in ref. 11. However the last
pair in (71) produces an identity which is the sum of two independent iden-
tities in ref. 11. As this illustrates, the method in this paper may produce
linear combinations of independent duality identities.

4.2. The General Case N=2

The general case N=2 is similar to the example above. Our method in
this paper reproduces many but not all of the duality identities discovered
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Table I. List of Compatible Local Pairs and Their Associated Partitions

Local pair (t, g) Partitions of R Partitions of Rg

(1)(2)(3)(4) (1)(2)(3)(4) (1g2g)(3g4g)
(1g2g)(3g4g) (13)(2)(4) (1g2g3g4g)

(14)(2)(3)
(23)(1)(4)
(24)(1)(3)

(1)(2)(34) (1)(2)(34) (1g2g)(3g)(4g)
(1g2g)(3g)(4g) (134)(2) (1g2g3g)(4g)

(234)(1) (1g2g4g)(3g)
(12)(3)(4) (12)(3)(4) (1g)(2g)(3g4g)
(1g)(2g)(3g4g) (123)(4) (1g3g4g)(2g)

(124)(3) (2g3g4g)(1g)
(12)(34) (12)(34) (1g)(2g)(3g)(4g)
(1g)(2g)(3g)(4g) (1234) (1g3g)(2g)(4g)

(1g4g)(2g)(3g)
(2g3g)(1g)(4g)
(2g4g)(1g)(3g)

(1)(2)(3)(4) (13)(24) (1g3g)(2g4g)
(1g)(2g)(3g)(4g) (14)(23) (1g4g)(2g3g)

in ref. 11. In ref. 11 a non-local block in a partition X was called a bridge,
and X was called a k-bridge partition if it contained k bridges (k=0, 1,...).
It was found that there was one independent duality relation corresponding
to every 0-bridge partition, and in addition one independent relation for
every k-bridge partition with k \ 2.
Our method here reproduces all the duality relations for the 0-bridge

partitions, but not for the k-bridge partitions. In the latter case it combines
k independent relations into a single relation. This was the case in the pre-
vious example, where the two relations for k=2 were combined into a
single relation.

4.3. An Example with N=3

As an illustration of our method we consider the case where there are
three external faces, each containing two roots. Roots 1, 2 are on face 1,
roots 3, 4 are on face 2 and roots 5, 6 are on face 3. The dual roots are
1g, 2g etc.
The number of local partitions of R is 8, since there are two choices on

each face. Hence the total number of pairs (t, g) of local partitions on R
and Rg is 64. The number of compatible local pairs is 27. After closer
analysis, it turns out that only 15 of these pairs can be realized via edge
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Table II. List of Partitions and Dual Partitions for the Pair (73)

PartitionX |X|+n(X) Partition Y |Y|+n(Y)

(12)(3)(4)(5)(6) 8 (1g)(2g)(3g4g)(5g6g) 7
(123)(4)(5)(6) 6 (1g3g4g)(2g)(5g6g) 5
(124)(3)(5)(6) 6 (1g5g6g)(2g)(3g4g) 5
(125)(3)(4)(6) 6 (1g)(2g3g4g)(5g6g) 5
(126)(3)(4)(5) 6 (1g)(2g5g6g)(3g4g) 5
(12)(35)(4)(6) 6 (2g)(1g3g4g5g6g) 3
(12)(36)(4)(5) 6 (1g)(2g3g4g5g6g) 3
(12)(3)(45)(6) 6 (1g3g4g)(2g5g6g) 3
(12)(3)(46)(5) 6 (2g3g4g)(1g5g6g) 3
(1235)(4)(6) 4
(1236)(4)(5) 4
(1245)(3)(6) 4
(1246)(3)(5) 4

sets. Hence our method produces 15 independent duality relations corre-
sponding to these 15 allowed pairs.
For brevity we present just one of these relations, corresponding to the

following local pair:

t=(12)(3)(4)(5)(6), g=(1g)(2g)(3g4g)(5g6g) (73)

Instead of writing out the identity, we list in Table II the 13 partitions
which occur on the left side of (65), and the 9 dual partitions that occur on
the right side, along with the exponents of q.

4.4. Bounds on the Number of Relations

In general it seems to be a hard problem to determine exactly the
number of compatible local partitions which can produce duality relations.
However our method does provide a lower bound on this number. If t is a
local partition of R, then certainlyS(t, tg) is not empty, and hence there is
always a duality relation for this compatible pair. The number of such
relations is the product of the number of planar local partitions on the
faces. For example, if N=2 |R| and the roots are paired on the faces, then
the number of relations is at least 2N.

5. THE TUTTE POLYNOMIAL

In 1955 Tutte (18, 19) introduced in graph theory the notion of dichromatic,
or Tutte, polynomials, which turns out to be precisely the Potts partition
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function. For our purposes and to conform with notations of ref. 13, we
define the Tutte polynomial associated with a graph G as the two-variable
polynomials

Q(G; t, v)=v−|V|Z(G; vt, v)=v−|V| C
S ı E
tp(S)v |S|+p(S) (74)

where we have t=vg=q/v. Similarly, one defines as in ref. 13 the rooted
Tutte polynomials

QX(G; t, v)=v−|V|ZX(G; vt, v)

QX, Y(G; t, v)=v−|V|ZX, Y(G; vt, v)
(75)

and the associated summations

HX(G; t, v)=v−|V|FX(G; vt, v)

HY(Gg; v, t)=t−|V
g|FY(G; vt, t)

HX, Y(G; t, v)=v−|V|FX, Y(G; vt, v)

HY, X(Gg; v, t)=t−|V
g|FY, X(G; vt, t)

(76)

Then, the duality relation (11) for the partition function becomes

vQ(G; t, v)=tQ(G (D); v, t) (77)

and Lemma 1 assumes the form

v1− |V|+|X|−n(Y)[v |S|(vt)p(S)− |X|]=t1− |V
g|+|Y|−n(X)[t |S

g|(vt)p(S
g)− |Y|] (78)

Likewise, the N=1 correlation duality (51) becomes

v |X|HX(G; t, v)=t |Y|HY(Gg; v, t), N=1 (79)

and the duality (53) becomes

v1+|X|tn(X)HX, Y(G; t, v)=t1+|Y|vn(Y)HY, X(Gg; v, t) (80)

Furthermore, the relation (65) for general N can be written as

v1− |V|+(|R|−N)/2 C
m

j=1
(vt)[|Yi|+n(Yi)]/2HXj=t

1− |Vg|+(|R|−N)/2 C
l

i=1
(vt)[|Yi|+n(Yi)]/2Hg

Yi

(81)

These expressions reflect the symmetric roles played by the variables v and
t=vg=q/v.
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